66/07/¢0

MU

Old “s'n gzgnl

- K}
. .

: PROVISIONAL PATENT APPLICATION TRANSMITTAL

This is a request for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(b)(2).

| Docket ! GOOG-100 | Type a plus sign {+}
Number inside this box ->

INVENTOR(s)/APPLICANT(s)

FIRST NAME, MIDDLE INITIAL, LAST NAME RESIDENCE (CITY AND EITHER STATE OR FOREIGN COUNTRY)

. Sergey Brin 725 Cowper Street, #26, Palo Aito, CA 94301

TITLE OF THE INVENTION (280 characters max}

EXTRACTING PATTERNS AND RELATIONS FROM "SCATTERED" DATABASES SUCH AS THE WORLD WIDE WEB

CORRESPONDENCE ADDRESS

Alan S, Hodes

Limbach & Limbach L.L.P.

2001 Ferry Building

San Francisco

Phone: 415/433-4150; Fax: 415/433-8716

ZIP CODE 94111-4262 COUNTRY

ENCLOSED APPLICATION PARTS (check all that apph)

Specification Number of Pages 12 X Small Entity Statement

Drawing(s) Number of Sheets Other (specify):

METHOD OF PAYMENT (check one)

A check or money order is enclosed to cover the Provisional filing fees. PROVISIONAL
FILING FEE
The Commissioner is hereby authorized to charge any additional filing AMOUNT(S)
fees and credit Deposit Account Number: 12-1420

The invention was made by an agency of the United States Government or under a contract with an agency of the
United States Government

X No.

Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted,

SIGNATURE: Date: February 23, 1999
TYPED or PRINTED NAME: Alan S. Hodes REGISTRATION NO. (if appropriate): 38,185

CERTIFICATION UNDER 37 CFR §1.10
I hereby certify that this New Provisional Application and the documents referred to as enclosed herein are being
deposited with the United States Postal Service on this date March 10, 1999, in an envelope bearing "Express Mail Post
Office To Addressee” Mailing Label Number EL1862138395US addressed to: Box Provisional Patent Application,
Assistant Commissioner for Patents, Washington, D.C. 20231.

e 277 C- / .
SIGNATURE: (& 77 Y A Date: March 10, 1999

Modified PTO/SB/16{6/95) - PATENTS\PROV-APP MRG Rev. 12/09/97

=

PTO

b33

e
%
O
<

i

Sent by: LIMBACH & LIMBACH 408 202 7384; 02/25/90 Q:07PM;Jmtkax #5; Page 14714

zZ sz

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY
STATUS (37 CFR 1.8(f) and 1.27{c)) - SMALL BUSINESS CONCERN

1 hersby dacince that | am
1 the owner of the smatt siness concsn kiantified below:
£ an official of the smull businest concemn ampowersd 10 4ot on bohalf of the coneern identifind balow:

NAME OF CONCERN Gocle, Inc,
ADDRESS OF CONCERN 165 University Aveous, Palo Alte; GA 4301
| horaly declare that the above identified small business concamn qualkifies ac 3 amall business concern as defined in 13

CFR 121.3-18, and reproduced in 37 CFR 1.8{d), for purposas of paying reduced feos under section 411{a) and {b) of This
N.Mﬂwm&dl.mmmmﬂmdﬂuwmmm&u of itw affikatos, dooa not excead

600 pooono. For purp (1) the b i o is the 3versoe over
hpmiuulﬁi«ﬂmoﬁm of the persons mlmu-ﬁu.umdmnmummmmifmonhof
medmflmm.amtzimmm of aach othar wha sithar, directly or indirectly, ans

g&mmnkorhum power to poxiral tha other, or 2 third party of partiss contzols ar Ms tha pawas £ oontrol

| noraDy deciars that IS under oomract of law mhanncumwdmand rmdnmhmxmammmn .

[X] tha spacificstion flled herawith with titie & fsted ahove.
[sppHotion ne. , filed .
i) patant na, , issisdd .

hwmmmuwtmmmnwmwmmmmmmmmzm QONCBM OF organization
mmumum\\bn listact DBtow® SN nd Pights 1o the invention are held by any parsan, othar than the
inventor, wha eould not qualify as an independent iveriay under 37 CFR 1.9{c) if that person made tha invamion, or by
g?"mml sm«mhwmmmibnnmdlhnmmmummm1swwnnmpmﬁtmgwnﬁonm

*NGTE: Sopsrzta verifiad atatements s requirad from esch namad parson, Gonoa.
mmmmn:unummmmmmmmmummmm 127}

i

NAME

T) incivdual 1] Small Bamnece Conoam | 1 Nonprafit Droaniaton

% ¢

11 indiwdual {] Small Business Concem {1 Nonpeafit Organization

1 acknawiadge the duty 1o file, in this application or patans, notfication of any change in Status tesuiting in loss of
eatitismant to smal entity atatus prior 1o paying. of At the tima or paving, the sirlivet of the issue fes or any mantenance
s dus attor the dute on which status as & smal) sntity is no kingir appropriate. 137 CFR 1.28(b)}

I havahy daclare that all statements mads haraln & My Swn knowiedpe sre TTus and that o statomonts made on
informetion snd balief are bellavad to ba trus; and further that theae $1a18Ments wire makds with the knowladga that willfuf
tales statemants 454 the ¥ke 3o made are punisnable by fine of knerlserment, or both, under Saction 1007 of ‘Tits 18 of
the Unfted Statas Code, mdﬂmwmmﬂnmummmwmmu- valicity of the application, any patent
lssuing theveon, of any patent te whizh this varcilied strtamane i divacted

NAME CF PERSON SIGNING Sergav Brin

TITLE OF PERSON OTHER THAN GV:N!H Pragh

SIGNATURE: . : ?L/oa&?

WATENTREVENTTUS.MAG: fAev. CANT78%

s6ed €<66%1 819 8G9 WOLJ Wd@1:198 66-80-4RW

b

¥
-

T

+

LNy 6

Qididl g
LR

PSS Eifdion i Mo

TR TTTTEY
LR F I

Jar

4

T

I Ea M

o
job

ot

i

ST

IN1 379009:Rq uds

Extracting Patterns and Relations from “Scattered” Databases
such as the World Wide Web

Inventor: Sergey Brin
725 Cowper Street, #26
Palo Alto, CA 94301

Abstract: The World Wide Web is a vast resource for information. At the same time it is
extremely distributed. For example, a particular type of data such as restaurant lists may be
scattered across thousands of independent information sources, in many different formats. In this
paper, I consider the problem of extracting a relation for a data type from these scattered sources,
automatically. I present a technique which exploits the duality between sets of patterns and
relations to grow the target relation starting from a small sample. To test our technique, I used it to
extract a relation of (author,title) pairs from sites on the World Wide Web.

1. Introduction

The World Wide Web provides a vast source of information of almost all types, ranging,
for example, from DNA databases to resumes to lists of favorite restaurants. However, this
information is often scattered among many Web servers and hosts, in many different formats. If
these chunks of information could be extracted from the World Wide Web and integrated into a
structured form, they would form an unprecedented source of information. It would include the
largest international directory of people, the largest and most diverse databases of products, the
greatest bibliography of academic works, and many other useful resources.

There has been considerable work on integrating a number of information sources using
specially coded wrappers or filters [Tsi, MOS97]. However, these can be time-consuming to
create and are usually used for on the order of tens, not thousands, of sources. In this paper, 1
address the problem of extracting a relation from the thousands of sources that may hold pieces
of the relation on the World Wide Web. Our goal is to discover information sources and to
extract the relevant information from them, preferably entirely automatically, or with very
minimal human intervention.

In this paper, so we have an example to work with, I consider the problem of extracting a
relation of books — (author.title) pairs from the Web. (However, the invention in it’s broadest
aspect is not so limited.) Intuitively, our solution works as follows. I begin with a small seed set
of (author, title) pairs (In tests I used a set of just five books). Then I find all occurrences of
those books on the Web. From these occurrences, I recognize patterns for the citations of books.

Then I search the Web for these patterns and find new books. I then take these books and find
all their occurrences, and from those generate more patterns. I can use these new patterns to find
more books, and so forth. Eventually, I obtain a large list of books and patterns for finding them.

2. The Duality of Patterns and Relations

We call our method DIPRE - Dual Iterative Pattern Relation Expansion. It relies on a duality
-1-

between patterns and relations which I explain below.
2.1 The Problem

Here I define the problem more formally:

Let D be a large database of unstructured information such as the World Wide Web. Let
R =1, .., 1, be the target relation. Every tuple, f, of R occurs one or more times in D. Every
such occurrence includes of all the fields of #, represented as strings, occurring in close proximity
to each other in D (in the case of the Web, this may mean all the fields are near each other, on the
same Web page).

In the test problem I examine in this paper, the target relation R is the set of books —
(author, title) pairs that occur on the Web. Clearly, this is not well defined. However, given a
potential author and title and where they are mentioned on the Web, a human can generally tell
whether this is a legitimate book.

| R'NR |
R

If I compute an approximation, R’ of R then the coverage is and the error rate is

| R'-R]|
| R'|
rate is much more critical than high coverage. Given a sufficiently large database, D, a recall of
just 20% may be acceptable. However, an error rate over 10% would likely cause the results to
be useless for many applications.
Typically, I cannot actually compute R. Therefore, I cannot know the precise values of

coverage and error rate. However, I can sample the error rate by having a user check random
elements of R’ Coverage is much more difficult to estimate.

. My goal is to maximize coverage and minimize the error rate. However, a low error

2.2 Patterns

Intuitively, a pattern matches one particular format of occurrences of tuples of the target
relation. Ideally the pattern is specific enough not to match any tuples that should not be in the
relation. However, in practice a few false positives may occur. Patterns may have various
representations. In one embodiment, I used a very limited class of regular expressions. More
formally:

Let p be a pattern. Then My(p) is the set of tuples that match p in D and |p|,, is the
number of elements in My(p). Then the coverage of p,Cp, (p,R) = [Mp(p)~R|/|R| and the error rate
of pis Ep, (p.R) = |M;, (p) - RI/|M, (p)]-

For a set of patterns, P = py,...,pk, I define M, (P) = UpepMp (p). T extend Gy, (P,R) and
Eyp, (P,R) analogously. Alternative definitions of M;, (P) may require a tuple to match multiple
patterns (see Section 6).

2.3 Pattern Relation Duality

An important observation is that given a set of patterns, P with high coverage and low
error rate, I can construct a very good approximation to R simply by finding all matches to all the

2.

between patterns and relations which I explain below.
2.1 The Problem

Here I define the problem more formally:

Let D be a large database of unstructured information such as the World Wide Web. Let
R =1, .., 1, be the target relation. Every tuple, f, of R occurs one or more times in D. Every
such occurrence includes of all the fields of #, represented as strings, occurring in close proximity
to each other in D (in the case of the Web, this may mean all the fields are near each other, on the
same Web page).

In the test problem I examine in this paper, the target relation R is the set of books —
(author, title) pairs that occur on the Web. Clearly, this is not well defined. However, given a
potential author and title and where they are mentioned on the Web, a human can generally tell
whether this is a legitimate book.

| R'NR |
R

If I compute an approximation, R’ of R then the coverage is and the error rate is

| R'-R]|
| R'|
rate is much more critical than high coverage. Given a sufficiently large database, D, a recall of
just 20% may be acceptable. However, an error rate over 10% would likely cause the results to
be useless for many applications.
Typically, I cannot actually compute R. Therefore, I cannot know the precise values of

coverage and error rate. However, I can sample the error rate by having a user check random
elements of R’ Coverage is much more difficult to estimate.

. My goal is to maximize coverage and minimize the error rate. However, a low error

2.2 Patterns

Intuitively, a pattern matches one particular format of occurrences of tuples of the target
relation. Ideally the pattern is specific enough not to match any tuples that should not be in the
relation. However, in practice a few false positives may occur. Patterns may have various
representations. In one embodiment, I used a very limited class of regular expressions. More
formally:

Let p be a pattern. Then My(p) is the set of tuples that match p in D and |p|,, is the
number of elements in My(p). Then the coverage of p,Cp, (p,R) = [Mp(p)~R|/|R| and the error rate
of pis Ep, (p.R) = |M;, (p) - RI/|M, (p)]-

For a set of patterns, P = py,...,pk, I define M, (P) = UpepMp (p). T extend Gy, (P,R) and
Eyp, (P,R) analogously. Alternative definitions of M;, (P) may require a tuple to match multiple
patterns (see Section 6).

2.3 Pattern Relation Duality

An important observation is that given a set of patterns, P with high coverage and low
error rate, I can construct a very good approximation to R simply by finding all matches to all the

2.

patterns. Thus, given a good set of patterns, I can build a good set of tuples. However, I also
wish to have the converse property -given a good set of tuples, I can build a good set of patterns.
I can do this by finding all occurrences of the tuples in D and discovering similarities in the
occurrences. The combination of the ability to find tuples from patterns and patterns from tuples
gives us great power and is the basis for the technique I propose in this paper.

3. Dual Iterative Pattern Relation Extraction

Dual Iterative Pattern Relation Extraction - DIPRE is a technique for extracting relations
which makes use of pattern-relation duality. In one embodiment, it works as follows:

1. R'-Sample
Start with a small sample, R’ of the target relation. This sample is given by the user and
can be very small. In our tests, I used a list of five books with authors.

2. O-FindOccurrences (R, D)
Then, find all occurrences of tuples of R”in D. In our experiments, these are nearby
occurrences of the author and the title of a book in text. Along with the tuple found, keep
the context of every occurrence (url and surrounding text).

3. PGenPatterns (O)
Generate patterns based on the set of occurrences. This is the tricky part of the algorithm.
Roughly speaking, this routine must generate patterns for sets of occurrences with
similar context. The patterns need to have a low error rate, so it is important that they are
not overly general. The higher the coverage of the patterns the better. However, a low
coverage can be compensated for with a larger database.

4, '« My, (P). Search the database for tuples matching any of the patterns.

5. If R'is large enough, return. Else go to step 2.

3.1 Controlling Expansion

The above process is not necessarily very stable and may stray away from R. In particular,
several bogus tuples in M,(P) can lead to several bogus patterns in P in the next iteration. This
in turn can cause a whole slew of bogus tuples. For this reason the GenPatterns routine must be
careful to minimize the amount of damage caused by a potential bogus tuple (or several small
tuples). Another measure of safety is to define

M, (P) more stringently so as to require tuples to match multiple patterns in 2. This second
measure has not been necessary in the tests I have performed but may be necessary in future
tests. Finally, various thresholds may need to fluctuate as the relation expands.

4, Finding Authors and Titles

For our experiments, I chose to compute a relation of (Author, Title) pairs from the World
Wide Web. This problem lends itself particularly well to DIPRE because there are a number of
well-known books which are listed on many web sites. Many of the web sites conform to a
reasonably uniform format across the site.

4.1 Patterns for Books

In order to use DIPRE to find books, it is necessary to define what patterns consist of,
The definition of a pattern largely determines the success of DIPRE. However, for our tests I
used a very simple definition of a pattern. In other embodiments, more sophisticated definitions
of patterns may work better.

I defined a pattern as a five-tuple: (order, uriprefix, prefix, middle, suffix) where order is
a boolean value and the other attributes are strings. If order is true, an (author, title) pair matches
the pattern if there is a document in the collection (the WWW) with a URL which matches
urlprefix* and which contains text that matches the regular expression: *prefix, author, middle,
title, suffix*

The author is restricted to:
[A-Z][A-Za-z . & [A-Za-z.]
The title is restricted to:
[A-Z0-9][A-Za-20-9 .,:'#12;&]**[A-Za-20-9?!]
If order is false, then the title and author are switched.

42 Occurrences

I also have to define how an occurrence is structured since it should have a
correspondence to the definition of a pattern. An occurrence of an (author,title) pair consists of a
seven-tuple:

(author, title, order, url, prefix, middle, suffix)

The order corresponds to the order the title and the author occurred in the text. The ur! is the
URL of the document they occurred on. The prefix consists of the m characters (in tests m was
10) preceding the author (or title if the title was first). The middle is the text between the author
and title and the suffix consists of the m characters following the title (or author).!

4.3 Generating Patterns for Books
The GenPatterns routine which takes a set of occurrences of books and converts them into

a list of patterns.. For my purposes, I use a simple set of heuristics for generating patterns from
occurrences. As long as there are few false positives (patterns that generate nonbooks) this is

! The prefix and suffix could actually be less than m characters if the line ends or starts close to
the occurrence but this is a restriction of the described embodiment and need not be a restriction
in other embodiments.

4.

sufficient. Each pattern need only have very small coverage since the Web is vast and there are
many sources of information so the total coverage of all the patterns can still be substantial. Of
course, the heuristics may be more complex than what I use in the described embodiment.

Suppose I am given a set of occurrences and I wish to construct as specific a pattern as
possible that matches all of them. I can do this as follows:

1. Verify that the order and middle of all the occurrences is the same. If not, it is not
possible to generate a pattern to match them all. Set outpattern.order and
outpattern.middle to order and middle respectively.

2. Find the longest matching prefix of all the urls. Set outpattern.uriprefix to that prefix.
3. Set outpattern.prefix to the longest matching suffix of the prefix's of the occurrences.
4. Set outpattern.suffix to the longest matching prefix of the suffix's of the occurrences.

I denote this routine GenOnePattern(O).

Pattern Specificity A pattern generated like the above can be too general or too specific. I am
not concerned about it being too specific since there will be many patterns generated and
combined there will be many books. However, the pattern may be too general and may produce
many nonbooks.

To combat this problem I attempt to measure the specificity of the pattern. The
specificity of a pattern p roughly corresponds to -log(P(XeM,, (p))) where X is some random
variable distributed uniformly over the domain of tuples of R.> For quick computation, I used the
following formula for the specificity of a pattern (|s| denotes the length of s):
specificity(p) =[p.middle||p. urlprefix||p.prefix||p.suffix|

I reject any patterns with too low a specificity so that overly general patterns are not
generated. More specifically, I insist that specificity(p) n > ¢ where # is the number of books
with occurrences supporting the pattern p and # is a threshold. This ensures that all the strings of
a pattern are nonempty (otherwise the specificity is zero). Also I preferably require that n > 1
since basing a pattern on one example is very error-prone.

Algorithm for Generating Patterns Here, I present the algorithm for GenPatterns(0). It takes
advantage of the algorithm GenOnePattern(O) introduced in Section 4.3

1. Group all occurrences o in O by order and middle. Let the resulting groups be O,,...0,.
For each group O,, p-GenOnePattern(0,). If p meets the specificity requirements then
output p. Otherwise:

—If all 0 in O, have the same URL then reject O..
—Else, separate the occurrences o in O, into subgroups grouped by the character in their
urls which is one past p.uriprefix. Repeat the procedure in step 2 for these subgroups.

This routine uses a simple further subdivision based on the url when the pattern generated
is not sufficiently specific. In alternative embodiments, the prefix or the suffix is used.

2 If the domain is infinite like the space of all strings, the uniform distribution may not be
sensible and a different distribution could be used.
-5-

I have described a simple technique for generating patterns from lists of occurrences
books. One can imagine far more sophisticated techniques and this is the subject of further
research. However, as is indicated by the results (Section~\refresults) even this simple scheme
works well.

4.4 Performance Issues

There are two very demanding tasks in DIPRE - finding occurrences of books given a
long list of books, and finding pattern matches given a list of patterns. Both of these operations
must take place over a very large database of Web documents.

For the first task, finding occurrences of books, I first pass the data through two fgrep
filters. One only passes through lines that contained a valid author and the other only passes
through lines that contained a valid title. After this, it is the task of a program written in Python
to actually check that there are matching authors and titles in the line, identify them and produce
occurrences as output. Several alternative approaches involving large regular expressions in Flex
and in Python were attempted for this purpose but they quickly exceeded various internal
bounds.

For the second task, I use just a Python program. Every pattern is translated into a pair of
regular expressions, one for the URL, and one for the actual occurrence. Every URL is first
tested to see which patterns apply to it. Then the program tests every line for the relevant regular
expressions. This approach is quite slow. Future versions are likely to use Flex or the rex C
library. This task can be made somewhat easier by targeting just the URL's which match the
patterns. However, the data is not structured to make that completely trivial, and preferably the
techniques are general enough to be able to handle no restrictions on URL's.

The generation of patterns from occurrences is not much of a performance issue at this
point in time because there are only thousands of occurrences generated. As larger tests are run,
this will become more important. Currently, the occurrences are sorted using gsort by order and

middle. Then a Python program reads through the resulting list and generates patterns as
described in Section 4.3.

5. Experiments
The following describes some experiments performed.
5.1 Web Data Used in Experiments

For data, I used a repository of 24 million Web pages totaling 147 gigabytes. This data is
part of the Stanford WebBase and is used for the Google search engine [BP] and other research
projects. As a part of the search engine, I have built an inverted index of the entire repository.

The repository spans many disks and several machines. It takes a considerable amount of
time to make just one pass over the data even without doing any substantial processing.
Therefore, in these I only made passes over subsets of the repository on any given iteration.

An important note for this project is that the repository contains almost no web pages
from Amazon [Ama]. This is because their automatically generated urls make crawling difficult.

6-

5.2 Pattern Relation Expansion

Isaac Asimov The Robots of Dawn

David Brin® Startide Rising

James Gleick Chaos: Making a New Science
Charles Dickens Great Expectations

William Shakespeare The Comedy of Errors

Fig. 1. Initial sample of books.

URL Pattern Text Pattern
www.sff.net/locus/c.* title by author (

dns.city-net.com/Imann/awards/hugos/1984.html ~ <i> fitle</i>by author (
dolphin.upenn.edw/dcummins/texts/sf-award.htm author || title || (

Fig. 2. Patterns found in first iteration.

I started the experiment with just 5 books (see Figure 1). These produced 199
occurrences and generated 3 patterns (see Figure 2). Interestmgly, only the first two of the five
books produced the patterns because they are both science fiction books. A run of these patterns
over matching URL's produced 4047 unique (author,title) pairs. They are mostly science fiction
but there are some exceptions. (See Figure 3.)

H. D. Everett The Death-Mask and Other Ghosts

H. G. Wells First Men in the Moon

H. G. Wells Science Fiction: Volume 2

H. G. Wells The First Men in the Moon

H. G. Wells The invisible Man

H. G. Wells The Island of Dr. Moreau

H. G. Wells The Science Fiction Volume 1

H. G. Wells The Shape of Things to Come: The Ultimate Revolution
H. G. Wells The Time Machine

H. G. Wells The War of the Worlds

H. G. Wells When the Sleeper Wakes

H. M. Hoover Journey Through the Empty

H. P. Lovecraft August Derleth & The Lurker at the Threshold

H. P. Lovecraft At the Mountains of Madness and Other Tales of Terror
H. P. Lovecraft The Case of Charles Dexter Ward

H. P. Lovecraft The Doom That Came to Sarnath and Other Stories

* The last name is purely coincidental.

Fig. 3 Sample of books found in first iteration.

A search through roughly 5 million Web pages found 3972 occurrences of these books.
This number was something of a disappointment since it was not a large blowup as had happened
in the first iteration. However, it would have taken at least a couple of days to run over the entire
repository so I did not attempt to generate more. These occurrences produced 105 patterns, 24 of
which had url prefixes which are not complete urls. A pass over a couple million urls produced
9369 unique (author, title) pairs. Unfortunately, there are some bogus books among these. In
particular, 242 of them are legitimate titles but had an author of **Conclusion”. I removed these
from the list. This was the only manual intervention through the whole process. In future
experiments, it would be interesting to see whether leaving these in would produce an
extraordinary amount of junk.

For the final iteration, I chose to use the subset of the repository which contained the
work books. This consisted of roughly 156,000 documents. Scanning for the 9127 remaining
books produced 9938 occurrences. These in turn generated 346 patterns. Scanning over the
same set of documents produced 15257 unique books with very little bogus data. (See Figure 4)

Henry James The Europeans

Henry James The Golden Bowl

Henry James The Portrait of a Lady

Henry James The Turn of the Screw

Henry James Turn of the Screw

Henry John CokeTracks of a Rolling Stone
Henry K. Rol Landmarks in Christian History
Henry Kisor Zephyr

Henry Lawson In the Days When the World Was Wide
Henry Longfellow The Song of Hiawatha

Henry Miller Tropic of Cancer

Henry Petroski Invention On Design

Henry Petroski The Evolution of Useful Things
Henry Roth Call It Sleep

Henry Sumner Maine Ancient Law

Henry Tuckerman, Lindsay,
Phila

Characteristics of Literature

Henry Van Dyke The Blue Flower

Henry Van Dyke, Scrib Days Off

Henry Van Loon Life and Times of Pieter Stuyvesant
Henry Wadsworth Longfellow Paul Revere's Ride

Henry Wadsworth Longfellow Evangeline

Henry Wadsworth Longfellow The Song of Hiawatha

Herbert Donald Lincoln

Herbert M. Hart Old Forts of the Northwest

Herbert M. Mason, Jr The Lafayette Escadrille

Herbert R. Lottman
Herbert Spencer

Jules Verne: An Exploratory Biography
The Man Versus the State

8-

Herman Daly
Herman Daly
Herman E. Kittredge
Herman Haken
Herman Hesse
Herman Hesse
Herman Hesse
Herman Melville
Herman Melville
Herman Melville
Herman Melville
Herman Melville
Herman Melville
Herman Melville
Herman Weiss
Herman Wouk
Hermann Hesse
Hermann Hesse
Hermann Hesse
Hermann Hesse
Herodotus
Herodotus
Herodotus
Herschel Hobbs
Hetschel
Hiaasen

Hilaire

Hilaire

Hilary Bailey
Hilary Norman
Hilbert Schenck
Hilbert Schenck
Hilda Conkling
Hilda Hughes
Hilda Hughes
Hillerman
Hillerman
Hillerman
Hiram Corson
Hjalmar Hjorth Boyesen
Hjalmar Hjorth Boysen
Hoag Levins
Holly Berkowitz Clegg
Holly Hollander
Homer A. Jack

For the Common Good
Valuing the Earth

Ingersoll: A Biographical Appreciation
Principles of Brain Functioning
Demian

Siddhartha

Sidharta

Bartleby, the Scrivener

Billy Budd

Billy Budd

Moby Dick

The Confidence Man

The Encantadas, or Enchanted Isles
Typee: A Peep at Polynesian Life
Sunset Detectives

War And Remembrance
Klingsor's Last Summer

Knulp

Rosshalde

Strange News From Another Star
Histories

The Histories

The History of Herodotus
Pastor's Manual

First Stage: Moon

Stormy Weather

Survivals and New Arrivals
The Great Heresies

Cassandra: Princess of Troy
The Key to Susanna
Chronosequence

The Battle of the Abaco Reefs
Poems by a Little Girl
Shudders

When Churchyards Yawn

A Thief of Time

Skinwalkers

Talking God

Introduction to Browning
Boyhood in Norway

Tales From Two Hemispheres
American Sex Machines
Recipes

Pandora

The Gandhi Reader

9.

Homer D. Hous, MacMillan Wild Flowers

Honore DeBalzac Old Goriot

Honore de Balzac The Duchesse de Langeais

Hope Muntz Golden Warrior

Horace Walpole Letter to the Countess of Upper Ossory
Horace Walpole The Castle of Otranto

Horace Walpole The Castle of Otranto: A Gothic Story
Horatio Alger Jr Paul Prescott's Charge

Horatio Alger Jr. Driven From Home

Horatio Alger Jr. Joe The Hotel Boy

Fig. 4. Sample of books in the final list.

This experiment is ongoing and hopefully, a larger list of books will be generated soon. The
current one is available online [Bri].

5.3 Quality of Results

To analyze the quality of the results, I picked twenty random books out of the list and
attempted to verify that they are actual books by searching on Amazon [AMA], the Visa
Shopping Guide for books [Vis], the Stanford online library catalog, and the Web.* As a
measure of the quality of the results, 19 of the 20 are all bonfire books. The remaining book was
actually an article - “*“Why I Voted for a User Car", by Andrew Tobias.

The big surprise was that a number of the books are not found in some or all of the
sources except for the Web. Some of these books are online books; some are obscure or out of
print; some simply are not listed on some sites for no apparent reason. In total, 5 of the 20 books
are not on Amazon which claims to have a catalog of 2.5 million books.

Other than the article mentioned above, there are a few visible problems with the data.
Some books are mentioned several times due to small differences such as capitalization, spacing,
how the author was listed (for example “*E.R. Burroughs" versus “Edgar Rice Burroughs").
Fortunately, however, authors are quite particular about how their name is listed and these
duplications are limited. In several cases, some information was appended to the author's name
such as publication date.

6. Conclusions

My general goal is to be able to extract structured data from the entire World Wide Web
by leveraging on its vastness. DIPRE has proven to be a remarkable tool in the simple example
of finding lists of books. It started with a sample set of 5 books and expanded it to a relatively
high quality list of over 15,000 books with very minimal human intervention. The same tool
may be applied to a number of other domains such as movies, music, restaurants, and so forth. A

* Unfortunately, the Library of Congress search system was down at the time of these tests.
-10-

more sophisticated version of this tool is likely to be able to extract people directories, product
catalogs, and more.

6.1 Scalability and Steady State

There are several challenges to the scalability of this method. One is the performance
required to scan for large numbers of patterns and tuples over a huge repository. Improvements
in the underlying algorithms and implementation are likely to solve this problem in the very near
future.

A potentially more difficult obstacle is whether DIPRE can be kept from diverging from
the target as it expands the relation. For example, since it really used only the two science fiction
books which are in the seed sample, why did it not produce a large list of science fiction books.
Clearly, it gravitated to a compilation of all books and even a few scattered articles managed to
enter the relation. Keeping this effect under control as the relation expands is nontrivial but there
are several possibilities.

Connection to Singular Value Decomposition One possibility is to redefine of M, (P) to
require multiple patterns to match a tuple. A more extreme version of this is to assign a weight
to every tuple and pattern. A matching tuple is assigned a weight based on the weights of the
patterns it matches. A generated pattern is assigned a weight based on the weights of the tuples
which match it. If this is done linearly, this technique breaks down to a singular value
decomposition of the tuple-pattern matrix (multiplied by its transpose). This is analogous to
Latent Semantic Indexing [DDF90] which is done on the document-word matrix. In this case,
the eventual steady state is the dominant eigenvector. Unfortunately, this is independent of the
initial sample which is clearly not desirable. Nonetheless, the relationship to LSI is compelling
and bears further investigation.

The independence of the steady state from the initial state above may also be a problem
even without the use of Weights. There are several possible solutions. One is to run only
through a limited number of iterations like I demonstrated in this paper. Another solution is to
make sure that the transformation of tuples to patterns to tuples is nonlinear and has some local
steady states which depend on the initial state. This can be accomplished through the use of the
initial sample R'in the computation of GenPatterns. In this case, the user may also provide an R’,
a list of counterexamples.

6.2 Implications of Automatic Extraction

One of the most surprising results of this experiment was finding books which are not
listed in major online sources such as the book “Disbanded™ by Douglas Clark [Cla] which is
published online or “The Young Gardeners' Kalendar™ by Dollie Radford [Rad04] an obscure
work published in 1904. If the book list can be expanded and if almost all books listed in online
sources can be extracted, the resulting list may be more complete than any existing book
database. The generated list would be the product of thousands of small online sources as
opposed to current book databases which are the products of a few large information sources.
Such a change in information flow can have important social ramifications.

-11-

References
[Ama]
[BP]

[Bri]

[Cla]

[DDF*90]

[MOS97]
[Rad04]

[Tsi]
[Vis]

Amazon home page. http://www.amazon.com.

Sergey Brin and Larry Page. Google search engine. http://google.stanford.edu.
Sergey Brin. List of books. http://www-db.stanford.edu/~sergey/booklist.html.
Douglas Clark. Disbanded. Benjamin Press, 69 Hillcrest Drive, Bath Ba2 1HD,
UK. http://www.bath.ac.uk/~exxdgdc/poetry/|Webrary/dil.html.

Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6):391-407, 1990.

Workshop on management of semistructured data.
http://www.research.att.com/~suciu/workshop-papers.html, May 1997.

Dollie Radford. The Young Gardeners' Kalendar. Alexander Moring, Ltd.,
London, 1904. http://www.indiana.edu/~letrs/wwp/radford/kalendar.html.
Tsimmis home page. http://www-db.stanford.edu/tsimmis/tsimmis.html.

Visa shopping guide for books.
http://shopguide.yahoo.com/shopguide/books.html.

12-

	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter
	Miscellaneous Incoming Letter

