Google Related Questions now use a Question Graph

I recently bought a lemon tree and wanted to learn how to care for it. I started asking about it at Google, which provided me with other questions and answers related to caring for a lemon tree. As I clicked upon some of those, others were revealed that gave me more information that was helpful.

Last March, I wrote a post about Google Related Questions, Google’s Related Questions Patent or “People Also Ask” Questions.

Google Related Questions Patent Updated to Include a Question Graph

related questions - questions database

Continue reading “Google Related Questions now use a Question Graph”

Semantic Keywords Research and Topic Models

Seeing Meaning with semantic keywords

I went to the Pubcon 2017 Conference this week in Las Vegas Nevada and gave a presentation about Semantic keywords and topic models based upon white papers and patents from Google. My focus was on things such as Context Vectors and Phrase-Based Indexing.

I promised in social media that I would post the presentation on my blog so that I could answer questions if anyone had any.

I’ve been doing Semantic keywords and topic models research like this for years, where I’ve looked at other pages that rank well for keyword terms that I want to use, and identify phrases and terms that tend to appear upon those pages, and include them on pages that I am trying to optimize. It made a lot of sense to start looking at semantic topic models research after reading about phrase based indexing in 2005 and later.

Continue reading “Semantic Keywords Research and Topic Models”

Google Extracts Facts from the Web to Provide Fact Answers

When Google crawls the Web, it extracts facts from content on the pages it finds as well as links on pages. How much information does it extract about facts on the Web? IN Providing fact answers? Microsoft showed off an object-based search about 10 years ago, in the paper, Object-Level Ranking: Bringing Order to Web Objects..

The team from Microsoft Research Asia tells us in that paper:

Existing Web search engines generally treat a whole Web page as the unit for retrieval and consuming. However, there are various kinds of objects embedded in the static Web pages or Web databases. Typical objects are products, people, papers, organizations, etc. We can imagine that if these objects can be extracted and integrated from the Web, powerful object-level search engines can be built to meet users’ information needs more precisely, especially for some specific domains.

Continue reading “Google Extracts Facts from the Web to Provide Fact Answers”

GS1 Web Vocabulary Schema Workshops in California

An Extension to a Web Vocaulary Schema from GS1

California bear flag

I noticed a blog post published yesterday, November 2, 2016, and it looked helpful: Use JSON-LD to add to your Website. Schema and structured data seem to be growing in importance on the Web, as we see more knowledge panels and rich snippets and product search results. I’ve been looking at Knowledge Panels in Site Audits. JSON-LD seems to be the favored Web vocabulary Schema by Google in adding structured data on your web pages. See: What is JSON-LD? A Talk with Gregg Kellogg.

If you do SEO and aren’t familiar with GS1, you probably should be. They invented the use of bar codes in shopping. They also came up with GTINS (Global Trade Item Numbers) which are used online at places such as eBay and Amazon, and Google Product Search. A recent blog post by GS1 Vice President Rich Richardson is also worth reading: Why bar code numbers matter.

In February, GS1 published an extension to a wb vocabulary Schema for products. Extensions like this are how Search and SEO are growing. The Schema blog told us about it in:

Continue reading “GS1 Web Vocabulary Schema Workshops in California”

How Google May Map a Query to Entity Search Suggestions (Updated)

Google Entity Search Suggestions Patent

Search predictions come from:

1. The terms you’re typing.

2. What other people are searching for, including trending searches. Trending searches are popular stories in your area that change throughout the day. Trending searches aren’t related to your search history.

3. Relevant searches you’ve done in the past (if you’re signed in to your Google Account and have Web & App Activity turned on).

Note: Search predictions aren’t the answer to your search, and they’re not statements by other people or Google about your search terms.

~ Search on Google using autocomplete

Continue reading “How Google May Map a Query to Entity Search Suggestions (Updated)”

Performing Entity Actions on Sites

Visitors to a website may want to perform certain actions related to Entities (specific places or people or things) that are displayed to them on the Web.

For example, at a page for a restaurant (an entity), a person viewing the site may want to create a reservation or get driving directions to the restaurant from their current location. Doing those things may require a person to take a number of steps, such as selecting the name of the restaurant and copying it, pasting that information into a search box, and submitting it as a search query, selecting the site from search results, determining if making a reservation is possible on the site, and then providing information necessary to make a reservation; getting driving directions may also require multiple steps.

Using a touch screen device may potentially be even more difficult because the site would possibly then be limited to touch input. This patent is very much about using touch screens.

A patent granted to Google this week describes a way to easily identify an entity such as a restaurant on a touch device, and select it online and take some action associated with that entity based upon the context of a site the entity is found upon. Actions such as booking a reservation at a restaurant found on a website, or procuring driving directions to that site, or other actions could be easily selected by the user of a site.

Continue reading “Performing Entity Actions on Sites”